WOROI: 67 - Insula
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 67 - Insula

Abbreviation: INS
Abbreviation: Ins

Variation: Insular cortex
Variation: Insular
Variation: Cortex Insularis

External databases

BrainInfo: 93
IBVD: Insula
Wikipedia: Insular cortex
ICBM Label: 51

Taxonomy

ParentsSiblingsChildren
Cerebral Cortex
  Posterior insula
Anterior insula
Left insula
Right insula
Economo-Koskinas area IA
Economo-Koskinas area IB
Economo-Koskinas area IC
Economo-Koskinas area ID

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
39 26 -9 Right insula 3 6
-39 -24 -9 Left insula 3 6
56 17 -6 Right insula 3 7
-53 14 -8 Left insula 3 7
-40 8 -10 Left insular cortex 4 9
40 8 -12 Right insular cortex 4 9
-32 8 -14 Left insular cortex 4 10
30 8 -16 Right insular cortex 4 10
-30 16 7 Anterior insula 8 16
-42 -10 -6 Posterior insula 8 20
36 -6 0 Right insula 13 34
-38 12 12 Left insula 13 34
32 16 -4 Right insula 13 35
32 -40 24 Right posterior insula 14 42
44 -16 -4 Right insula 14 43
28 23 3 Right anterior insula 17 50
36 5 13 Right anterior insula 17 50
36 -13 8 Right posterior insula 17 50
40 10 0 Left frontal insula 17 50
58 -36 18 Right insula 19 53
31 22 8 Right insula 19 53
-31 20 14 Left insula 19 53
-44 -2 7 Left insula 19 53
-40 2 2 Left anterior insula 23 72
40 8 1 Right anterior insula 23 75
-36 -15 12 Left insula 32 110
-30 20 4 Left anterior insula 35 118
-30 22 0 Left anterior insula 35 120
-38 -6 16 Left posterior insula 35 121
48 -10 0 Right planum temporale and insula 39 132
34 7 17 Right inferior frontal operculum/Insula 39 132
36 -2 6 Insula 45 148
-41 -12 1 Insula 45 148
-32 20 7 Insula 47 152
-44 6 -4 Left middle insula 54 176
44 9 -6 Right middle insula 54 176
-36 -20 23 Left posterior insula 56 180
32 13 18 Right anterior insula 56 180
-36 -20 23 Left posterior insula 56 181
32 13 18 Right anterior insula 56 181
40 9 0 Anterior insula 57 182
-40 18 6 Anterior insula 57 183
36 -12 12 Right Mid-/anterior insula 58 184
-38 -4 0 Left Mid-/anterior insula 58 184
36 18 4 Right anterior insula 60 186
-30 24 5 Left anterior insula 60 186
-39 -18 19 Left posterior insula 60 186
39 9 7 Right middle insula 60 187
-53 -3 7 Left middle insula 60 187
-39 -18 19 Left posterior insula 60 187
42 19 -6 Right anterior insula 60 188
-36 22 -4 Left anterior insula 60 188
-36 12 1 Left middle insula 60 188
42 -16 19 Right posterior insula 60 188
56 9 1 Right inferior insula 60 188
36 12 4 Right middle insula 60 189
-36 9 7 Left middle insula 60 189
45 -13 14 Right posterior insula 60 189
-33 16 -8 Anterior insula 62 193
-31 14 -6 Anterior insula 62 195
38 6 -12 Right superior temporal gyrus/insula 68 209
28 18 -4 Right anterior insula 68 209
-37 -9 3 Insula 69 213
-37 5 3 Insula 69 213
-37 -9 3 Insula 69 214
-37 5 3 Insula 69 214
-37 -9 3 Insula 69 215
-37 5 3 Insula 69 215
-37 -9 3 Insula 69 216
-37 5 3 Insula 69 216
-37 -9 3 Insula 69 217
-37 5 3 Insula 69 217
-40 -25 4 Left insula 71 220
35 -11 -2 Right anterior-mid insula 71 222
38 -6 4 Right anterior-mid insula 71 222
35 31 9 Right anterior insula 71 223
46 11 9 Right anterior insula 71 223
-32 22 15 Left anterior insula 71 223
38 17 9 Right anterior insula 71 224
-34 15 3 Insula 72 225
43 6 6 Insula 72 226
40 12 9 Insula 72 227
-42 -10 14 Insula 75 230
-28 14 9 Left insula 76 233
-30 12 7 Left insula 76 234
-20 10 14 Left insula 76 238
38 -7 3 Right insular cortex 77 242
-38 -7 3 Left insular cortex 77 242
-35 -6 7 Left insula 79 245
-40 0 6 Left insula 82 256
-38 -1 17 Left insula 82 260
34 30 8 Insula 83 262
40 1 17 Insula 83 263
34 12 10 Insula 83 263
-30 20 14 Insula 83 264
53 -11 9 Right insula 85 271
39 -10 -10 Right insula (inferior) 85 274
-42 -1 11 Insular cortex 92 293
52 17 -8 Insular cortex 94 297
-33 23 7 Anterior insula 95 298
-39 1 11 Mid-insular 95 299
-31 -14 8 N. lenticularis/posterior insula 95 299
35 3 4 Mid-insula 95 299
-36 0 6 Insula, left 97 302
-29 -3 20 Insula, left 98 306
35 0 20 Insula, right 98 306
36 0 4 Insula 100 312
-34 10 -4 Insula 100 312
-30 8 7 Insula/lenticular nucleus 102 319
-37 -19 14 Posterior insula 102 319
-26 5 4 Insula/lenticular nucleus 102 320
39 3 14 Insula/operc. precentral 102 320
-22 26 4 Left caudate/insula 105 329
31 21 2 Frontal, inferior/insular 106 331
44 20 10 Right insula 107 336
-28 -6 16 Left insular cortex 108 337
36 -4 12 Right insular cortex 108 337
-35 15 7 Left insular 116 349
-36 18 1 Left insular 116 352
-39 -13 14 Left insular 116 354
29 10 8 Right insular 116 355
-42 6 5 Left insular 116 355
38 6 9 Anterior insula 117 362
-31 5 5 Ipsilateral anterior insula 117 362
38 -13 -5 Posterior insula 117 364
-32 -7 -8 Ipsilateral posterior insula 117 364
42 15 9 Anterior insula 117 366
-39 -24 9 Posterior insula 118 367
35 3 7 Insula 118 367
-33 1 0 Anterior insula 118 368
-39 -22 16 Posterior insula 118 368
30 -6 14 Insula 118 368
28 -25 1 Right posterior insula 122 380
-34 -29 1 Left posterior insula 122 380
48 -6 0 Right insula 125 387
50 -6 2 Right insula 125 388
-30 10 0 Claustrum/insula 130 402
36 -38 4 Adjacent caudate (tail), posterior insula 130 402
38 -26 0 Insula 130 402
38 4 8 Insula 130 402
34 -2 4 Claustrum/insula 130 402
30 -26 4 Posterior insula 130 403
38 -11 -6 Right insula 134 412
44 -9 10 Right insula 134 414
40 4 4 Right mid-insula 135 417
-36 12 0 Left insula/inferior frontal gyrus 135 419
32 10 1 Right insula 137 424
-40 11 -7 Left insula 137 424
32 21 1 Right insula 138 426
27 18 10 Right anterior insula 148 456
36 -16 6 Right posterior insula 148 456
41 9 12 Right anterior insula 149 457
29 -10 15 Right posterior insula 149 457
39 -1 -11 Right orbitoinsular junction 149 458
40 13 13 Right anterior insula 149 459
-34 -7 8 Left temporal insula 152 468
21 6 15 Right insula/claustrum 158 487
-34 -2 9 Left insula/claustrum 158 487
36 22 10 Anterior portion of the right insular cortex 160 492
38 14 4 Right insular cortex 166 510
34 25 -5 Right inferior frontal gyrus/insula 171 524
-38 33 6 Left inferior frontal gyrus, insula 171 525
-35 -13 2 Left insula 173 532
39 -11 4 Right insula 173 532
-31 18 -3 Left insula 176 538
38 18 -3 Right insula 176 539
-32 22 2 Left insula 176 539
-36 6 4 Insula 177 547
33 8 -8 Anterior insula 178 557
-34 8 -6 Anterior insula 178 560
37 16 9 Right anterior insula 178 561
-32 16 10 Left anterior insula 178 561
35 15 3 Right insula 179 562
-33 14 -1 Left insula 179 562
-28 18 8 Left insula 185 582

Summary

  x     y     z   Description
-35 3 5 Mean coordinate in left hemisphere
38 3 5 Mean coordinate in right hemisphere
36 3 5 Mean coordinate with ignored left/right
20 -40 -16 Minimum coordinate with ignored left/right
58 33 24 Maximum coordinate with ignored left/right
6 15 8 Standard deviation with ignored left/right
corner cube of WOROI: 67 - Insula

Text contexts

When compared to viewing emotionally neutral film excerpts, viewing erotic film excerpts was associated, for both genders, with bilateral blood oxygen level dependent (BOLD) signal increases in the anterior cingulate, medial prefrontal, orbitofrontal, insular, and occipitotemporal cortices, as well as in the amygdala and the ventral striatumSherif Karama; Andre R. Lecours; Jean-Maxime Leroux; Pierre Bourgouin; Gilles Beaudoin; Sven Joubert; Mario Beauregard. Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping 16(1):1-13, 2002. PMID: 11870922. WOBIB: 4.
Multiple brain areas, including bilateral secondary somatosensory cortices (SII) and insula, and the frontal lobe and thalamus contralateral to the stimulus side, were found to be involved in the response to painful stimulationX. Xu; H. Fukuyama; S. Yazawa; T. Mima; T. Hanakawa; Y. Magata; M. Kanda; N. Fujiwara; K. Shindo; T. Nagamine; H. Shibasaki. Functional localization of pain perception in the human brain studied by PET. NeuroReport 8(2):555-559, 1997. PMID: 9080447. WOBIB: 13.
While our data indicate that the bilateral SII play an important role in pain perception, they also indicate that there is no pain-related somatotopic organization in the human SII or insulaX. Xu; H. Fukuyama; S. Yazawa; T. Mima; T. Hanakawa; Y. Magata; M. Kanda; N. Fujiwara; K. Shindo; T. Nagamine; H. Shibasaki. Functional localization of pain perception in the human brain studied by PET. NeuroReport 8(2):555-559, 1997. PMID: 9080447. WOBIB: 13.
On the left side, activation of the middle frontal gyrus, superior frontal gyrus, superior precentral gyrus, thalamus and the caudal part of the anterior cingulate gyrus was seen, while on the right side we found activation in the supramarginal gyrus, mesencephalon and insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
09) without correction for multiple comparisons, we found additional activation in the medial pontine tegmentum, mesencephalon, right thalamus, right middle frontal gyrus and left insulaS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
fMRI regions that correlated with the amplitude of the P300 wave were supramarginal gyri, thalamus, insula and right medial frontal gyrus, and are presumably sources of the P300 waveSilvina Horovitz; Pawel Skudlarski; John Gore. Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP. Magnetic Resonance Imaging 20(4):319, 2002. PMID: 12165350. WOBIB: 19.
In accord with previous studies, the results showed that being aware of causing an action was associated with activation in the anterior insula, whereas being aware of not causing the action and attributing it to another person was associated with activation in the inferior parietal cortexChlöé Farrer; Chris D. Frith. Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. NeuroImage 15(3):596-603, 2002. PMID: 11848702. DOI: 10.1006/nimg.2001.1009. WOBIB: 23.
We suggest that the anterior insula is concerned with the integration of all the concordant multimodal sensory signals associated with voluntary movementsChlöé Farrer; Chris D. Frith. Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. NeuroImage 15(3):596-603, 2002. PMID: 11848702. DOI: 10.1006/nimg.2001.1009. WOBIB: 23.
Specifically, recall of previously memorized words from temporal cues was associated with activity in the basal forebrain, right middle frontal gyrus, right superior temporal gyrus, and posterior cingulate gyrus, whereas their recall from person cues was associated with activity in the left insula, right middle frontal gyrus, and posterior cingulate gyrusToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
The activity was restricted to foci in the medial insula and the anterior cingulate cortex and, subcortically, in the caudate nucleus and the putamen, all bilaterallyAndreas Bartels; Semir Zeki. The neural basis of romantic love. NeuroReport 11(17):3829-3834, 2000. PMID: 11117499. WOBIB: 54.
Temperature sensation is regarded as a submodality of touch, but evidence suggests involvement of insular cortex rather than parietal somatosensory corticesA. D. Craig; K. Chen; D. Bandy; Eric M. Reiman. Thermosensory activation of insular cortex. Nature Neuroscience 3(2):184-190, 2000. PMID: 10649575. DOI: 10.1038/72131. WOBIB: 56.
Using positron emission tomography (PET), we found contralateral activity correlated with graded cooling stimuli only in the dorsal margin of the middle/posterior insula in humansA. D. Craig; K. Chen; D. Bandy; Eric M. Reiman. Thermosensory activation of insular cortex. Nature Neuroscience 3(2):184-190, 2000. PMID: 10649575. DOI: 10.1038/72131. WOBIB: 56.
Notably, perceived thermal intensity was well correlated with activation in the right (ipsilateral) anterior insular and orbitofrontal corticesA. D. Craig; K. Chen; D. Bandy; Eric M. Reiman. Thermosensory activation of insular cortex. Nature Neuroscience 3(2):184-190, 2000. PMID: 10649575. DOI: 10.1038/72131. WOBIB: 56.
The cold pressor test evoked significant activity in the contralateral S1, and bilaterally in the somatosensory association areas (including S2), the ACC and the mid-insulaP. Petrovic; K. M. Petersson; P. H. Ghatan; S. Stone-Elander; M. Ingvar. Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85(1-2):19-30, 2000. PMID: 10692599. WOBIB: 58.
Painful thermal stimulation of either hand elicited significant activity over a large network of brain regions, including insula, inferior frontal gyrus, cingulate gyrus, secondary somatosensory cortex, cerebellum, and medial frontal gyrus (corrected P < 0Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
Insula activity was distributed along its anterior-posterior axis and depended on the hand stimulated and attentional contextJonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
In particular, activity within the posterior insula was contralateral to the site of stimulation, tested using regions of interest (ROI) analysis: significant side x site interaction (P = 0Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
With attention diverted from the painful stimulus bilateral anterior insula activity moved posteriorly to midinsula and decreased in extent (ROI analysis: significant main effect of attention (P = 0Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
Comparing baseline scans during pain with scans taken after stimulation, when the patient had become pain-free, revealed significant rCBF increases in the prefrontal (Brodmann areas (BA) 9, 10, 11 and 47) and anterior insular cortices, hypothalamus and periaqueductal gray associated with the presence of chronic painR. C. Kupers; J. M. Gybels; Albert Gjedde. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87(3):295-302, 2000. PMID: 10963909. WOBIB: 62.
During thalamic stimulation, blood flow significantly increased in the amygdala and anterior insular cortexR. C. Kupers; J. M. Gybels; Albert Gjedde. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 87(3):295-302, 2000. PMID: 10963909. WOBIB: 62.
A comparison of PERSONAL and IMPERSONAL (autobiographical vs nonautobiographical episodic memory ecphory) demonstrated a preponderantly right hemispheric activation including primarily right temporomesial and temporolateral cortex, right posterior cingulate areas, right insula, and right prefrontal areasG. R. Fink; H. J. Markowitsch; M. Reinkemeier; T. Bruckbauer; J. Kessler; W. D. Heiss. Cerebral representation of one's own past: neural networks involved in autobiographical memory. Journal of Neuroscience 16(13):4275-82, 1996. PMID: 8753888. WOBIB: 68.
Both strong and mild expressions of disgust activated anterior insular cortex but not the amygdala; strong disgust also activated structures linked to a limbic cortico-striatal-thalamic circuitMary L. Phillips; A. W. Young; C. Senior; M. Brammer; C. Andrew; A. J. Calder; E. T. Bullmore; D. I. Perrett; D. Rowland; Steven C. R. Williams; J. A. Gray; Anthony S. David. A specific neural substrate for perceiving facial expressions of disgust. Nature 389(6650):495-8, 1997. PMID: 9333238. DOI: 10.1038/39051. WOBIB: 71.
In the 46 degrees C experiment, positive signal changes were found in the frontal gyri, anterior and posterior cingulate gyrus, thalamus, motor cortex, somatosensory cortex (SI and SII), supplementary motor area, insula, and cerebellumL. R. Becerra; H. C. Breiter; M. Stojanovic; S. Fishman; A. Edwards; A. R. Comite; R. G. Gonzalez; D. Borsook. Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magnetic Resonance in Medicine 41(5):1044-57, 1999. PMID: 10332889. WOBIB: 72.
The uniquely activated areas were in the secondary somatosensory region, insula, and posterior cingulate cortexP. A. Gelnar; B. R. Krauss; P. R. Sheehe; N. M. Szeverenyi; A. V. Apkarian. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10(4):460-82, 1999. PMID: 10493903. DOI: 10.1006/nimg.1999.0482. WOBIB: 75.
Noxious stimulation caused an increase in regional cerebral blood flow in the thalamic nuclei and anterior cingulate and insular corticesM. E. Faymonville; S. Laureys; C. Degueldre; G. DelFiore; A. Luxen; G. Franck; M. Lamy; P. Maquet. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 92(5):1257-67, 2000. PMID: 10781270. WOBIB: 76.
Cortically, brain blood flow decreased in the social phobics and increased in the comparison subjects more during public than private speaking in the orbitofrontal and insular cortices as well as in the temporal pole and increased less in the social phobics than in the comparison group in the parietal and secondary visual corticesM. Tillfors; T. Furmark; I. Marteinsdottir; Håkan Fischer; A. Pissiota; B. Langstrom; M. Fredrikson. Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. American Journal of Psychiatry 158(8):1220-6, 2001. PMID: 11481154. WOBIB: 77.
We observed an interaction between the predictability of stimuli and self-generated actions in several areas, including the medial posterior cingulate cortex, left insula, dorsomedial thalamus, superior colliculus and right inferior temporal cortexS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
Negative relations were observed bilaterally in the secondary visual cortex (Areas 18 and 19) and the right inferior parietal cortex (Area 39), with a tendency also for the right insular cortex (Areas 13, 15, and 16)M. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
Because results from lesion and stimulation studies in humans converge with the present imaging results, we conclude that the cingulum and the motor cortex, in addition to the parietal and possibly the insular cortex, form part of one or several distributed neural network(s) involved in electrodermal controlM. Fredrikson; T. Furmark; M. T. Olsson; Håkan Fischer; J. Andersson; B. Langstrom. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35(2):179-85, 1998. PMID: 9529944. WOBIB: 94.
These structures include the contralateral M1/S1 cortex, bilateral S2 and mid-insular cortex, contralateral VP thalamus, medial ipsilateral thalamus, and the vermis and paravermis of the cerebellumK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Some cortical, but not subcortical, structures showed significant or borderline activation only during the early scans (ipsilateral premotor cortex, contralateral perigenual anterior cingulate, lateral prefrontal, and anterior insular cortex); they may mediate pain-related attentive or anticipatory functionsK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Disgusted facial expressions activated the right putamen and the left insula cortex, whereas enhanced activity in the posterior part of the right gyrus cinguli and the medial temporal gyrus of the left hemisphere was observed during processing of angry facesR. Sprengelmeyer; M. Rausch; U. T. Eysel; H. Przuntek. Neural structures associated with recognition of facial expressions of basic emotions. Proc R Soc Lond B Biol Sci 265(1409):1927-31, 1998. PMID: 9821359. WOBIB: 97.
We detected signal increase in the right middle temporal gyrus and left prefrontal cortex during presentation of familiar faces, and in several brain regions, including bilateral posterior cingulate gyri, bilateral insulae and right middle occipital cortex during presentation of unfamiliar facesMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
Significant rCBF increases to 50 degrees C stimuli were found contralaterally in the thalamus, anterior cingulate cortex, premotor cortex, and secondary somatosensory (S2) and posterior insular corticesK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Significant activity also appeared within the region of the contralateral anterior insula and lenticular nucleusK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortexK. B. McDermott; J. G. Ojemann; Steven E. Petersen; J. M. Ollinger; A. Z. Snyder; E. Akbudak; T. E. Conturo; Marcus E. Raichle. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory 7(5-6):661-78, 1999. PMID: 10659091. WOBIB: 106.
Painful stimulation produced contralateral activation in primary and secondary somatosensory cortices (SI and SII), anterior cingulate cortex, anterior insula, the supplemental motor area of the frontal cortex, and thalamusR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
Vibrotactile stimulation produced activation in contralateral SI, and bilaterally in SII and posterior insular corticesR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
In contrast, painful stimuli were significantly more effective in activating the anterior insula, a region heavily linked with both somatosensory and limbic systemsR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
Both genders showed a bilateral activation of premotor cortex in addition to the activation of a number of contralateral structures, including the posterior insula, anterior cingulate cortex and the cerebellar vermis, during heat painP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
Volume of interest comparison (t-statistic) also suggested greater activation of the contralateral insula and thalamus in the females (P < 0P. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
RESULTS: Brain regions in which activity was significantly correlated with tic occurrence in the group included medial and lateral premotor cortices, anterior cingulate cortex, dorsolateral-rostral prefrontal cortex, inferior parietal cortex, putamen, and caudate, as well as primary motor cortex, the Broca's area, superior temporal gyrus, insula, and claustrumE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
In an individual patient with prominent coprolalia, such vocal tics were associated with activity in prerolandic and postrolandic language regions, insula, caudate, thalamus, and cerebellum, while activity in sensorimotor cortex was noted with motor ticsE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
The results demonstrate that the right superior temporal cortex, the insula and subcortically putamen and caudate nucleus are the neural structures damaged significantly more often in patients with spatial neglectHans-Otto Karnath; Monika Fruhmann Berger; Wilhelm Kuker; Chris Rorden. The Anatomy of Spatial Neglect based on Voxelwise Statistical Analysis: A Study of 140 Patients. Cerebral Cortex 14(10):1164-1172, 2004. PMID: 15142954. DOI: 10.1093/cercor/bhh076. FMRIDCID: . WOBIB: 133.
FINDINGS: In the acute pain state, activation was seen in the ipsilateral inferior hypothalamic grey matter, the contralateral ventroposterior thalamus, the anterior cingulate cortex, and bilaterally in the insulaeArne May; Anish Bahra; Christian Büchel; Richard S. J. Frackowiak; Peter J. Goadsby. Hypothalamic activation in cluster headache attacks. Lancet 352(9124):275-278, 1998. PMID: 9690407. FMRIDCID: . WOBIB: 137.
The citalopram-induced change in cerebral metabolism was positively correlated with age in the right precuneus, right paracentral lobule, and left middle temporal gyrus and negatively correlated with age in the left anterior cingulate gyrus, right inferior and middle frontal gyri, right insula, and right inferior parietal lobuleSara Goldberg; Gwenn S. Smith; Anna Barnes; Yilong Ma; Elisse Kramer; Kimberly Robeson; Margaret Kirshner; Bruce G. Pollock; David Eidelberg. Serotonin modulation of cerebral glucose metabolism in normal aging. Neurobiology of Aging 25(2):167-174, 2004. PMID: 14749134. FMRIDCID: . WOBIB: 138.
Multimodally responsive areas comprised a right-lateralized network including the temporoparietal junction, inferior frontal gyrus, insula and left cingulate and supplementary motor areasJ. Downar; A. P. Crawley; D. J. Mikulis; K. D. Davis. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience 3(3):277-283, 2000. PMID: 10700261. DOI: 10.1038/72991. FMRIDCID: . WOBIB: 148.
A significant negative correlation was observed between binding potential values and the novelty seeking scores on TCI in the right insular cortexT. Suhara; F. Yasuno; Y. Sudo; M. Yamamoto; M. Inoue; Y. Okubo; K. Suzuki. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage 13(5):891-895, 2001. PMID: 11304084. DOI: 10.1006/nimg.2001.0761. FMRIDCID: . WOBIB: 160.
Our result indicates that there is a significant association between dopamine D2 receptor binding and the human novelty seeking trait in the right insular cortexT. Suhara; F. Yasuno; Y. Sudo; M. Yamamoto; M. Inoue; Y. Okubo; K. Suzuki. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage 13(5):891-895, 2001. PMID: 11304084. DOI: 10.1006/nimg.2001.0761. FMRIDCID: . WOBIB: 160.
05) of normalized cerebral counts were located in the left sensorimotor cortex (MISI), right motor cortex, left thalamus, right insula, supplementary motor area (SMA), and bilaterally in the primary auditory cortex and the cerebellumMorten Blinkenberg; Christian Bonde; Søren Holm; Claus Svarer; Jimmy Andersen; Olaf B. Paulson; Ian Law. Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism 16(5):794-803, 1996. PMID: 8784224. DOI: 10.1097/00004647-199609000-00004. FMRIDCID: . WOBIB: 166.
Unfair offers elicited activity in brain areas related to both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex)Alan G. Sanfey; James K. Rilling; Jessica A. Aronson; Leigh E. Nystrom; Jonathan D. Cohen. The Neural Basis of Economic decision-Making in the Ultimatum Game. Science 300(5626):1755-1758, 2003. PMID: 12805551. DOI: 10.1126/science.1082976. FMRIDCID: . WOBIB: 179.
Further, significantly heightened activity in anterior insula for rejected unfair offers suggests an important role for emotions in decision-makingAlan G. Sanfey; James K. Rilling; Jessica A. Aronson; Leigh E. Nystrom; Jonathan D. Cohen. The Neural Basis of Economic decision-Making in the Ultimatum Game. Science 300(5626):1755-1758, 2003. PMID: 12805551. DOI: 10.1126/science.1082976. FMRIDCID: . WOBIB: 179.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:34:31